Optimal compressed sensing reconstructions of fMRI using 2D deterministic and stochastic sampling geometries

نویسندگان

  • Oliver Jeromin
  • Marios S Pattichis
  • Vince D Calhoun
چکیده

BACKGROUND Compressive sensing can provide a promising framework for accelerating fMRI image acquisition by allowing reconstructions from a limited number of frequency-domain samples. Unfortunately, the majority of compressive sensing studies are based on stochastic sampling geometries that cannot guarantee fast acquisitions that are needed for fMRI. The purpose of this study is to provide a comprehensive optimization framework that can be used to determine the optimal 2D stochastic or deterministic sampling geometry, as well as to provide optimal reconstruction parameter values for guaranteeing image quality in the reconstructed images. METHODS We investigate the use of frequency-space (k-space) sampling based on: (i) 2D deterministic geometries of dyadic phase encoding (DPE) and spiral low pass (SLP) geometries, and (ii) 2D stochastic geometries based on random phase encoding (RPE) and random samples on a PDF (RSP). Overall, we consider over 36 frequency-sampling geometries at different sampling rates. For each geometry, we compute optimal reconstructions of single BOLD fMRI ON & OFF images, as well as BOLD fMRI activity maps based on the difference between the ON and OFF images. We also provide an optimization framework for determining the optimal parameters and sampling geometry prior to scanning. RESULTS For each geometry, we show that reconstruction parameter optimization converged after just a few iterations. Parameter optimization led to significant image quality improvements. For activity detection, retaining only 20.3% of the samples using SLP gave a mean PSNR value of 57.58 dB. We also validated this result with the use of the Structural Similarity Index Matrix (SSIM) image quality metric. SSIM gave an excellent mean value of 0.9747 (max = 1). This indicates that excellent reconstruction results can be achieved. Median parameter values also gave excellent reconstruction results for the ON/OFF images using the SLP sampling geometry (mean SSIM > =0.93). Here, median parameter values were obtained using mean-SSIM optimization. This approach was also validated using leave-one-out. CONCLUSIONS We have found that compressive sensing parameter optimization can dramatically improve fMRI image reconstruction quality. Furthermore, 2D MRI scanning based on the SLP geometries consistently gave the best image reconstruction results. The implication of this result is that less complex sampling geometries will suffice over random sampling. We have also found that we can obtain stable parameter regions that can be used to achieve specific levels of image reconstruction quality when combined with specific k-space sampling geometries. Furthermore, median parameter values can be used to obtain excellent reconstruction results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing

Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Variable Density Sampling with Continuous Trajectories

Reducing acquisition time is a crucial challenge for many imaging techniques. Compressed sensing (CS) theory offers an appealing framework to address this issue since it provides theoretical guarantees on the reconstruction of sparse signals by projection on a low-dimensional linear subspace. In this paper, we focus on a setting where the imaging device allows us to sense a fixed set of measure...

متن کامل

Optimal arrays for compressed sensing in snapshot-mode radio interferometry

Context. Radio interferometry has always faced the problem of incomplete sampling of the Fourier plane. A possible remedy can be found in the promising new theory of compressed sensing (CS), which allows for the accurate recovery of sparse signals from sub-Nyquist sampling given certain measurement conditions. Aims. We provide an introductory assessment of optimal arrays for CS in snapshot-mode...

متن کامل

Deterministic constructions of compressed sensing matrices

Compressed sensing is a new area of signal processing. Its goal is to minimize the number of samples that need to be taken from a signal for faithful reconstruction. The performance of compressed sensing on signal classes is directly related to Gelfand widths. Similar to the deeper constructions of optimal subspaces in Gelfand widths, most sampling algorithms are based on randomization. However...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2012